Technical Resources / Calculators /
Thrust Restraint Calculator

PROJECT DATA
TYPE OF FITTING
Tee

DIAMETER OF RUN
(IN)
8

DIAMETER OF
BRANCH (IN)
6

> RUN LENGTH (FIRST
> JOINTS) (FT)

36

LAYING CONDITION
Type 5

SOIL DESIGNATION
Good Sand \& Grave

TEE 追

> UNIT FRICTIONAL FORCE (LBS/FT)973REQUIRED RESTRAINEDLENGTH FOR EACHSIDE OF THE BEND

Ductile Iron Pipe Research Association

This program is based on the equations and procedures found in the DIPRA brochure Thrust Restraint Design for Ductile Iron Pipe. Conservative assumptions, along with an explicit safety factor, have been employed to assure a conservative design with an adequate overall safety factor. For any given project, the ultimate responsibility for the proper use of this program rests with the user.
※ Thrust Restraint Design for Ductile Iron Pipe

TABLE 2
Dimensions and Unit Weights of Pipe and Water

Nominal Pipe Size (in)	Pressure Class	Pipe Outside Diameter, D' (ft)	Cross-sectional Area of Pipe, A (in ${ }^{2}$)	W_{p} (lbs/ft)	W_{w} ($\mathrm{lbs} / \mathrm{ft}$)	$\begin{aligned} & W_{p}+W_{w}^{*} \\ & \text { (Ibs/ft) } \end{aligned}$
3	350	0.33	12.3	10	4	14
4	350	0.40	18.1	12	6	18
6	350	0.58	37.3	18	13	31
8	350	0.75	64.3	24	24	48
10	350	0.93	96.7	30	37	67
12	350	1.10	136.8	39	53	92
14	250	1.28	183.8	47	72	119
16	250	1.45	237.7	57	94	151
18	250	1.63	298.6	66	119	185
20	250	1.80	366.4	78	147	225
24	200	2.15	522.7	93	212	305
30	150	2.67	804.2	123	329	452
36	150	3.19	1152.0	163	473	636
42	150	3.71	1555.2	206	642	848
48	150	4.23	2026.8	261	838	1099
54	150	4.80	2602.1	325	1078	1403
60	150	5.13	2981.2	371	1237	1608
64	150	5.47	3387.0	410	1407	1817
*Based on minimum pressure class pipe with standard cement-mortar lining. The difference in $W_{p}+W_{w}$ for other pipe pressure classes is not normally significant in relation to these calculations and these values may be used conservatively regardless of pipe pressure class. However, the designer may use actual pipe weights for optimum design if desired.						

FIGURE 9

Standard ANSI/AWWA C150/A21.50 Laying Conditions for Ductile Iron Pipe

Type 1*

Flat-bottom trench. ${ }^{\dagger}$ Loose backfill.

Type 2

Backfill lightly consolidated to centerline of pipe.

Type 3
Pipe bedded in 4-inch minimum loose soil. \ddagger Backfill lightly consolidated to top of pipe.

* For 14-inch and larger pipe, consideration should be given to the use of laying conditions other than Type 1.
+ "Flat-bottom" is defined as "undisturbed earth."
\ddagger "Loose soil" or "select material" is defined as "native soil excavated from the trench, free of rocks, foreign material, and frozen earth."
${ }^{+\dagger}$ AASHTO T-99 "Standard Method of Test for the Moisture-Density Relations of Soils Using a
$5.5 \mathrm{lb}(2.5 \mathrm{~kg})$ Rammer and a 12 in . (305 mm) Drop." Available from the American Association of State Highway and Transportation Officials.
** Granular materials are defined per the AASHTO Soil Classification System (ASTM D3282) or the Unified Soil Classification System (ASTM D2487), with the exception that gravel bedding/backfill adjacent to the pipe is limited to $2^{\prime \prime}$ maximum particle size per ANSI/AWWA C60O.

Tees (Figure 11)

$$
P A_{b}=L_{b} F_{f}+1 / 2 R_{s} L_{r}
$$

Employing a safety factor and solving for L_{b},

$$
\begin{aligned}
& L_{b}= {\left[\frac{S_{f} P A_{b}-1 / 2 R_{s} L_{r}}{F_{f}}\right] } \\
& R_{s}=K_{n} P_{p} D_{r}^{\prime}
\end{aligned}
$$

$A_{b} \quad=$ Cross sectional area of branch (in ${ }^{2}$)
$L_{b} \quad=$ Length of branch (ft) to be restrained
$L_{r} \quad=$ Total length between first joints on either side of tee on the run (ft)
$D_{r}^{\prime} \quad=$ Diameter of run (ft)
$F_{f} \quad=\left(F_{s}\right)_{b}$; For standard asphaltic coated pipe
$F_{f} \quad=0.7\left(F_{s}\right)_{b}$; For polyethylene encased pipe
$\left(F_{s}\right)_{b}=$ Unit frictional force (lbs/ft) on branch
$=\pi D^{\prime} C+\left(2 W_{e}+W_{p}+W_{w}\right) \tan \delta$
(used for tee branches, dead end conditions and reducers)
$\mathrm{S}_{\mathrm{f}} \quad=$ Safety factor (Usually 1.5)

FIGURE 11

Tees

Note: Restrained length of tee branch is not proportional to pressure and must be calculated for each internal pressure situation.
$\mathrm{F}_{\mathrm{f}}=\left(\mathrm{F}_{\mathrm{s}}\right)_{\mathrm{b}}$; For standard ashphaltic coated pipe
$F_{f}=0.7\left(F_{s}\right)_{b}$; For polyethylene encased pipe

